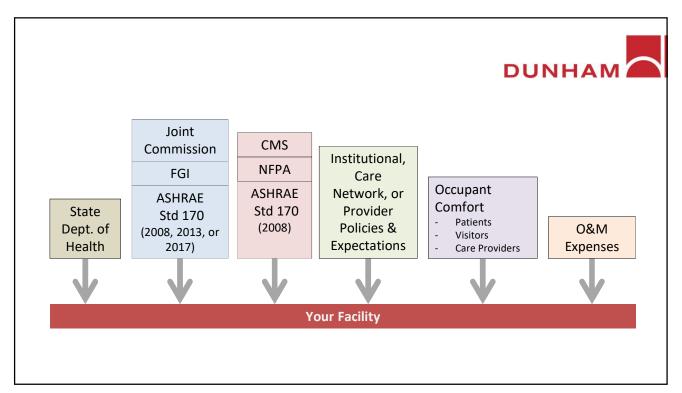
Mechanical + Electrical Challenges

MINNESOTA HEALTHCARE ENGINEERS ASSOCIATION

1



Darin May, PE, FPE, LEED AP BD+C
Todd Grube, PE, LEED AP
Justin Thiner, PE, LEED AP BD+C
Kimberly J. Pierson, PE, LEED AP, HFDP
Brad Kettunen, PE, LEED AP


May 3, 2019

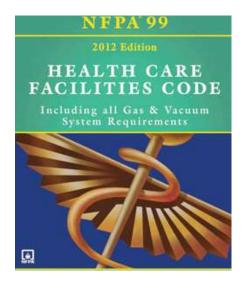
TODAY'S AGENDA

- Pressures on Your Facility
- USP 797/800
- Emergency Power Systems
- Condensing Boilers ----- BREAK -----
- Humidity Control
- Cold Temperature Operation
- Commissioning
- Electrical Testing
- Medivators
- Procedure Rooms

3

DEPARTMENT OF HEALTH

- Construction project review of drawing and construction review
- When does a remodel change the applicable code?
 - Change of use Yes
 - Moving walls Yes
 - Painting the walls No
 - Discuss early with DOH, design team, owner



5

CMS (MEDICARE/MEDICAID)

CMS adopted NFPA 99-2012 in July 2016 with enforcement beginning in November 2016

ASHRAE 170-2008 (No Addenda)

JOINT COMMISSION

Joint Commission currently uses the 2014 Guidelines for Design and Construction of Hospitals

 Referenced in the Environment of Care

7

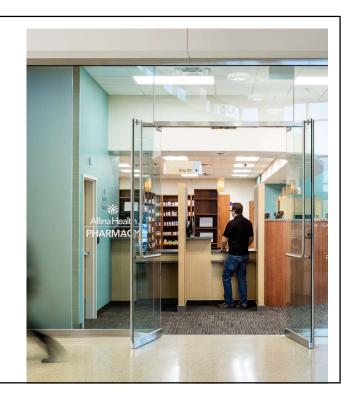
OPERATING ROOMS

Version of Guidelines for Design & Construction of Healthcare Facilities	Pressure Relationship	Min. OA ACH	Min. Total ACH	Recirculated by means of room units	RH%	Temp (°F)	Comments
1992-1993 AIA	Positive (no magnitude)	3	15	No	50-60	70-75	
2001 AIA	Positive (+0.01" wg)	3	15	No	30-60	68-73	
2006 AIA	Positive (+0.01" wg)	3	15	No	30-60	68-73	
2010 FGI / ASHRAE 170-2008	Positive (+0.01" wg)	4	20	No	30-60	68-75	CMS Enforced
2014 FGI / ASHRAE 170-2013	Positive (+0.01" wg)	4	20	No	20-60	68-75	JC EC Reference
2018 FGI / ASHRAE 170-2017	Positive (+0.01" wg)	4	20	No	20-60	68-75	

ENDOSCOPY ROOMS

Guidelines for Design & Construction of Healthcare Facilities	Pressure Relationship	Min. OA ACH	Min. Total ACH	Recirculated by means of room units	RH%	Temp (°F)	Comments
1992-1993 AIA				Not Addressed			
2001 AIA	Negative	2	6	No	30-60	68-73	New to the Guidelines
2006 AIA	No Requirement	2	6	No	30-60	68-73	
2010 FGI / ASHRAE 170-2008	Positive	2	15	No	30-60	68-73	CMS Enforced
2014 FGI / ASHRAE 170-2013	No Requirement	2	6	No	20-60	68-73	JC EC Reference
2018 FGI / ASHRAE 170-2017	No Requirement	2	6	No	20-60	68-73	
Bronchoscopy 2001 AIA to 2018 FGI	Negative (-0.01 in wg)	2	12	No	NR	68-73	All Air Exhausted

9


USP 797/800

- Final Versions to be issued September 2019
- EnforcementDecember 2019
- 797 Non-Hazardous
- 800 Hazardous

WHAT DO I NEED?

- Category 1 vs 2 **Compounding** - 12 Hour BUD
- Category 1 Segregated **Compounding Area**
- Category 2 **Ante-Room and Buffer Room(s)**

11

HAZARDOUS COMPOUNDING

- **Hazardous Compounding Room**
 - ISO 7

 - 30 ACH (supply) -0.01 to -0.03 in WC
 - 68° F
 - Low exhaust for Refrigerator
- **Ante Room**
 - **ISO 7**
 - **30 ACH**
 - +0.02 to +0.05 in WC
 - 68° F
 - Low return

NON-HAZARDOUS COMPOUNDING

- Non-HazardousCompounding Room
 - ISO 7
 - 30 ACH
 - +0.02 to +0.05 in WC
 - 68° F
 - Low return
- Ante Room
 - ISO 8
 - 20 ACH
 - +0.02 to +0.05 in WC
 - 68° F
 - Low return

13

HAZARDOUS STORAGE

- Inside Hazardous Compounding Room
- Separate Room
 - Non-classified
 - 12 ACH Exhaust
 - -0.01 in WC

WHAT ARE WE COVERING

- Existing facility
- New or existing generator
- Existing or new ATS's
- Testing compliance requirements
- Documentation

15

DEFINITIONS

EPS – **Emergency Power Supply**

EPSS – Emergency Power Supply System

EES – Essential Electrical System

- Level 1 Loss of human life or serious injury (110)
- Level 2 Less critical (110)

GENERATORS

NFPA 70 (NEC): 701.3:

- **Test periodically**
- **Maintain unit**
- **Record maintenance**
- Informational note refers to 110

NFPA 99

- Minimum 12 tests per year
- Does not need to meet 10 second start every month
- Refers to 110.8

NFPA 101: SEE 110 NFPA 110: 8.4:

- 30 minutes/month
 - Minimum exhaust temperature recommended by the generator manufacturer
 OR minimum 30% of standby nameplate KW
- If the above is not met:
 - Load-bank one a year at 50% for 30 minutes and 75% for 1 hour.
- Document time, date, duration, etc.

17

GENERATORS

Typical Commissioning Issues: Interior and Exterior:

- Low coolant temp
- **ECM vs. Generator Controller points**
- **Batteries in acid resistant tray**
- Battery cover or not?
- Breakers can be shut off without alarm
- Engine idle/cool down not annunciated
- **Emergency lighting (battery pack at unit)**
- ISO 8528 5 (2018) Performance: G3

Exterior

- **Dampers fail open**
- Remote shut-down
- Fuel class

ATS

- Existing facility
- New or existing generator or ATS with controls upgrades
- Testing compliance requirements
- Documentation

19

ATS

NFPA 70 (NEC): 701.3 and 5:

- Test periodically
- Maintain unit
- Record maintenance
- SCC Rating marked on the EXTERIOR of enclosure

NFPA 99

- 10 second criteria is spelled out here (Type 1)
- Does not need to meet 10 second start every month
- Refers to 110.8

NFPA 101: SEE 110 NFPA 110: 8.4.3.1:

- Initiate start from a different ATS each month
- Level 1 EPSS full test required once every 36/mo.
- DOCUMENT from which ATS the start signal was initiated

ATS

Typical Commissioning Issues: Interior and Exterior:

- Settings: Who determines?
- Fault current ratings
- Circuit breaker settings and coordination
- Labeling
- Testing
- Thermoscanning

Exterior

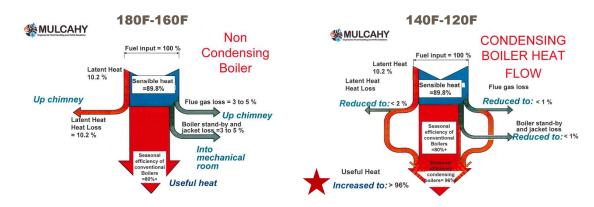
- Service entrance rating
- Internal heat and MONITORING

21

CONDENSING BOILERS

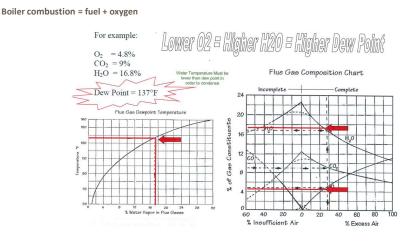
- Why?

- Efficiency
- Scarcity of Licensed Boiler Operators
- Maintenance

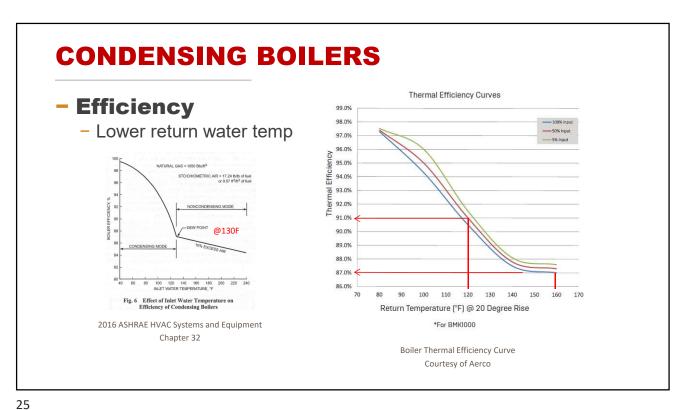


CONDENSING BOILERS

- Why are condensing boilers more efficient?



Because they can capture and use latent heat


23

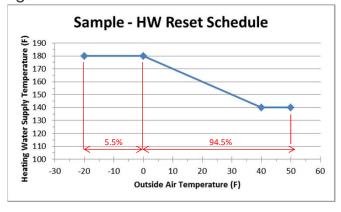
CONDENSING BOILERS

- Water Temp < Dew Point Temp = Condensation</p>

Graphs courtesy of Mulcahy Co.

CONDENSING BOILERS

- Improving efficiency with existing **HIGH TEMP hydronic**


components

CONDENSING BOILERS

- Heating Water Reset
 - Winter Setpoint: 180°F or 190°F, from original system design
 - Spring and Fall: 140°F

For Minneapolis: 8760 Bin Hours 0F to 50F: 4,478 hrs -30F to 0F: 256 hrs

27

Mechanical + Electrical Challenges Pt. 2

MINNESOTA HEALTHCARE ENGINEERS ASSOCIATION

TODAY'S AGENDA

- Pressures on Your Facility
- USP 797/800
- Emergency Power Systems
- Condensing Boilers

---- BREAK -----

- Humidity Control
- Cold Temperature Operation
- Commissioning
- Electrical Testing
- Medivators
- Procedure Rooms

29

OPERATING ROOM HUMIDITY

Why?

Important For

- Reduction of infections
- Reduction of electrostatic discharge
- Integrity of sterile supplies and equipment
- Preventing development of mold

OPERATING ROOM HUMDITY

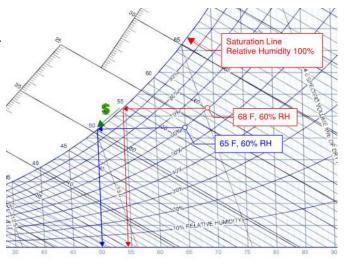
- Regulatory Requirement

- FACITLITY GUIDELINES INSTITUTE (FGI)
- ASHRAE STANDARD 170
- CENTERS FOR MEDICARE & MEDICATE SERVICES (CMS)

RELATIVE HUMDITY

31

OPERATING ROOM HUMDITY


- Humidification

- Central system / Point-of-use
- Building steam / Clean steam
- Vapor barriers
- Windows & exterior walls

OPERATING ROOM HUMDITY

- Dehumidification
 - 68F Room Temp vs. 65F
 - Lower Coil Leaving Air Temperature
 - Increased Reheat

33

OPERATING ROOM HUMDITY

- HVAC systems
- System capability
- Infrastructure investment
- Increased operating costs
 - Efficiency options
 - > Leaving air temperature reset
 - > Heat recovery coils
 - > Energy wheels

OPERATING ROOM HUMDITY

Compliance policy

- Infection control
- Duration / Magnitude
- Local / BAS alarming
- Staff training
- When / Who to call

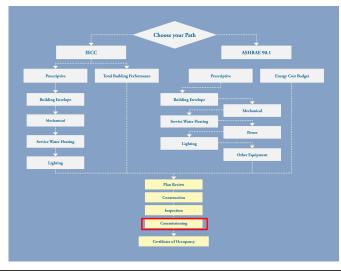
35

AHU RESTART

- AHU shutdown on freezestat? Now what

- Open the Return Air damper
- If bitterly cold, consider manual override of heating water control valve
- Restart fans; run for 5-10 minutes to stabilize
- Slowly open OA and Relief Air dampers; let unit stabilize after each subsequent opening

Note


It is possible to automate this sequence, however it is difficult to estimate how slow the OA damper should open, especially in frigid cold

COMMISSIONING IN HEALTHCARE FACILITIES

- Required per 2015 MN Energy Code

IECC, C408.2 SYSTEM COMMISSIONING Exemption:

- 1. < 40 TONS COOLING & < 600 MBH HEATING
- 2. Sleeping Units in Hotels & Motels

ASHRAE 90.1, 6.7.2.4 SYSTEM COMMISSIONING Required:

1. > 50,000 SF

Except warehouses and semi-heated spaces

37

COMMISSIONING IN HEALTHCARE FACILITIES

Required per 2014 FGI Guidelines

- 1.2-7.1 Installation of new or modification of existing, the following <u>shall</u> be commissioned:
 -) BAS system
 - Domestic hot water
 - > Fire alarm and fire protection
 - > Essential power systems

State Adoption of the FGI Guidelines

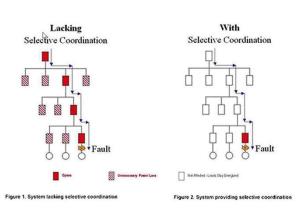
Areas of Concern

- CRITICAL AND INTENSIVE CARE
 - SURGICAL SERVICES
 - ISOLATION ROOMS
 - PHARMACIES
- AREAS CONTAINING HAZARDOUS MATERIALS

WHAT ARE WE COVERING

- Breaker coordination
- Arc Flash study
- Breaker testing
- Lighting testing
- Panelboard load metering
- Battery testing
- Receptacle testing
- Compliance documentation

39


BREAKER COORDINATION

NEC Article 100:

- Coordination (Selective)
- Localization of an overcurrent condition to restrict outages to the circuit or equipment affected, accomplished by the choice of overcurrent protective devices, and their ratings for settings.

Tools used:

- SKM Power Tools for Windows
- Easy Power
- EDŚA
- ETAP

ARC FLASH STUDY

- How is it Calculated?

- NFPA 70E
- IEEE 1584
- Preferred Method

- Facility Responsibilities

- Employee training
- Written safety program
- Available PPE
- Insulated tools
- Arc Flash hazard calculations
- Proper labeling

A DANGER

NO SAFE PPE EXISTS ENERGIZED WORK PROHIBITED

AVAILABLE FAULT: 30.56 kA

FLASH PROTECTION
Flash Hazard at 18 in
Min. Arc Rating: 118 cal/cm*2
Flash Protection Boundary:296 in
Glove Class: 60

SHOCK PROTECTION
Shock Hazard when
ovver is removed
Limited Approach
Restricted Approach
12 in

DO NOT WORK ON LIVE!

MSB February 09, 2018

AWARNING

Arc Flash and Shock Risk Appropriate PPE Required

AVAILABLE FAULT: 11.41 kA

FLASH PROTECTION
Flash Hazard at 18 in
Min. Arc Rating: 0.25 cal/cm*2
Flash Protection Boundary.7 in
Glove Class: 00

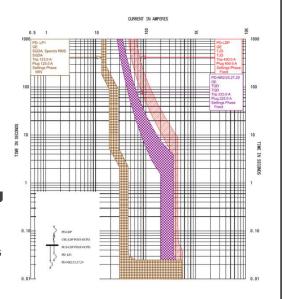
SHOCK PROTECTION

Shock Hazard when over is removed Limited Approach 42 in Restricted Approach 12 in

Shirt & pants or coverall, Nonmelting (ASTM F1506) or Untreated Fiber

BUS-RTU19 February 09, 2018

41


BREAKER TESTING

Why test breakers:

- Known failure
- Nuisance tripping
- Suspicion of issues
- Confirm operation prior to installation in a critical system

How to test:

- Primary injection (preferred) confirms sensors and electronics are functioning
- Secondary injection only confirms electronics
- Follow NETA, NEMA and Manufacturers recommended procedures.

LIGHTING TESTING

- Verify egress path
- Verify critical lighting
- Verify controls conform to construction documents
- Verify interfaces to A/V and other systems
- Test with scheduled outage
- Documentation

43

PANELBOARD LOAD METERING

Why:

- Confirm distribution capacity
- Manage load growth

Where to Implement:

- On more critical systems where load growth is likely
- Where additional distribution is most costly (generation)

How:

- Integral to panelboards, ATS's, breakers
- Separate system

BATTERY TESTING

Visual inspection Voltage testing Float current

- Current delivered by the charger when battery is fully charged
- Track for baseline and watch for increases

Ripple current - Bad charger?

Temperature – leads to short life

Specific gravity - Verify battery chemistry

Impedance testing – Indicator of battery health

Discharge testing – Verifies capacity, but not health of system

Documentation – confirm compliance and establishes baselines

45

RECEPTACLE TESTING

NFPA 99: 6.3.3.2

- Visual inspection
- Ground continuity
- Polarity
- Retention force 115g (4oz)
- New devices at patient bed locations or deep sedation shall be tested.
- Additional testing as required by documented performance data?
 - Documented failure rates from manufacturer
 - Reports of receptacle issues
- Non-Hospital grade receptacles: 12 month intervals
- Document

MEDIVATORS

- What can go wrong?
- Mixing valve
- Hot water temperature
- Water pressure
- Water quality
- Odors
- Fixes

47

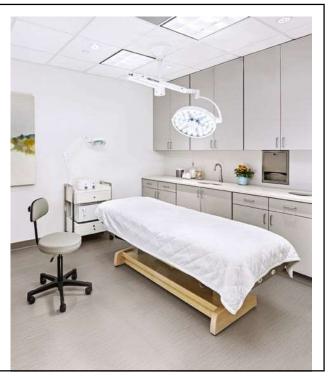
MEDIVATOR FIXES

- Mixing valve approved by Medivator
- Reduce "dead leg"
- Heat trace
- Buffer tank with Booster pump
- Back flushingPre-filter
- Connected exhaust duct

PROCEDURE ROOMS

- -ASHRAE 170 Requirements
- Positive pressure
- 15 Total ACH/ 3 ACH OA
- 70-75° F
- 20-60% RH
- Group E diffusers, laminar flow
- MERV 13 filter bank number 1

49


PROCEDURE ROOMS

- ASHRAE 170-2008 and 2013
- procedure room (Class A surgery): provides minor surgical procedures performed under topical, local, or regional anesthesia without preoperative sedation. Excluded are intravenous, spinal, and epidural procedures, which are Class B or C surgeries.

PROCEDURE ROOMS

- ASHRAE 170-2017
- procedure room*: a room designated for the performance of procedures that do not meet the definition of "invasive procedure" and may be performed outside the restricted area of a surgical suite and may require the use of sterile instruments or supplies. Local anesthesia and minimal and moderate sedation may be administered in a procedure room as long as special ventilation or waste-anesthesia gas-disposal systems are not required for anesthetic agents used in these rooms.

51

QUESTIONS?

MINNEAPOLIS | DULUTH | ROCHESTER

CONTACT US

Darin May, PE, FPE, LEED AP BD+C darin.may@dunhameng.com | 614-465-7639

Todd Grube, PE, LEED AP todd.grube@dunhameng.com | 612-465-7643

Justin Thiner, PE, LEED AP BD+C justin.thiner@dunhameng.com | 612-465-7647

Kimberly J. Pierson, PE, LEED AP, HFDP kim.pierson@dunhameng.com | 612-465-7273

Brad Kettunen, PE, LEED AP brad.kettunen@dunhameng.com | 612-465-7637